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Active Disturbance Rejection Formation Control for
Multiagent Systems with Input Constraints
Caoyuan Gu, Xiang Wu, Wen-An Zhang, Member, IEEE, Hongjie Ni, and Steven X. Ding

Abstract—This paper deals with formation control of multi-
agent systems (MASs) subject to disturbances and input con-
straints, and an active disturbance rejection formation control
(ADRFC) approach based on distributed observation is proposed.
Firstly, the states and disturbances of tracking error systems
are estimated by a distributed intermediate estimator (DIE).
Secondly, an improved distributed model predictive control
(IDMPC) is proposed to achieve formation control of MASs under
disturbances and input constraints. Then, the robust ADRFC
method is designed by combining the DIE and IDMPC, and the
stability of the whole system is analyzed. Finally, experiments are
conducted on a MAS consisting of four mobile robots to illustrate
the effectiveness and superiority of the proposed method.

Index Terms—Multiagent systems, disturbance rejection, inter-
mediate estimator, model predictive control, formation control

I. INTRODUCTION

IN recent years, multiagent systems (MASs) [1], [2] have
received more and more attention due to their wide appli-

cations in the fields of intelligent detection [3], logistics and
transportation [4], disaster relief [5] and other areas. Then,
as one of the main applications of MASs, formation control
tasks [6] become a major research hotspot, and a variety of
formation control methods have been designed, such as leader-
follower-based [7], virtual structure-based [8], and behavior-
based methods [9]. On the other hand, disturbances caused
by modeling uncertainties, aging and wear of components,
environmental noise, and many other factors are another
troublesome issue in the formation control task of MASs.
Furthermore, disturbances in any agent can spread to the
whole system through the communication topology, which
may seriously deteriorate the system performance or even
destabilize the MAS.

To solve the disturbance problem, active disturbance rejec-
tion techniques based on disturbance observer or estimator
become capable ways, because they have two degrees of
freedom without sacrificing the control performance of the
nominal system [10]. Then, disturbance observer (DOB) [11]–
[13], extended state observer (ESO) [14]–[17], equivalent input
observer (EID) [18], [19], intermediate estimator (IE) [20]
and many other disturbance observer-based techniques have
been widely studied and applied. Notably, compared to the
common existing observers, intermediate estimator do not
need to satisfy the observer matching condition. Moreover, the
intermediate estimator can directly quantify the convergence
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speed by adjusting the observer parameter. In fact, the speed
and accuracy of fault estimation can be improved by directly
tuning the parameter [20]. Thereby, it has been widely used
in MASs and obtained excellent performance [21], [22].

In the formation control task of MASs, distributed model
predictive control (DMPC) is a highly effective approach [23]–
[25]. By introducing a cost function and solving a series
of distributed optimization problems, the optimal control law
for each agent can be obtained. Furthermore, considering the
disturbances rejection issue of formation control for MASs,
disturbance estimation information is added to the control law
of DMPC to achieve robust control performance [26], [27].
However, to the best of our knowledge, there are usually
control input constraints in practical MAS considering the
performance and security of hardware devices, which leads to
the fact that some of the above methods cannot be applied in
practical devices. Meanwhile, the stability of these methods
proves to be simpler and does not analyze the terminal
constraint set and terminal penalty matrix of DMPC in detail.
In addition, the formation control and the disturbance rejection
of existing methods are essentially two separate parts [27]–
[29], which reduces the control performance of the system.
As mentioned above, there is still no effective method that
can organically combine formation control and disturbance
rejection technique to address the formation control task of
MASs with input constraints and disturbances.

Motivated by the above discussion, this paper reconstructs
the distributed intermediate estimator (DIE) and proposes
an improved distributed model predictive control (IDMPC).
Furthermore, an active disturbance rejection formation control
(ADRFC) method is proposed for MAS by integrating DIE
and IDMPC. The contributions of this paper are threefold:

1) Compared with the nominal DIE in [21], an observer
gain minimization strategy is designed under the premise
of guaranteeing the DIE estimation performance. The
phenomenon of controller oscillation due to too large ob-
server gain after adding a correction term to the IDMPC
prediction equation is avoided.

2) An IDMPC strategy is proposed to handle the input
constraints issue of the actual actuator of MASs. By
maximizing the terminal constraint set and minimizing
the terminal penalty matrix, a suitable controller can
be obtained to efficiently perform path tracking and
formation synchronization tasks.

3) Integrated formation controller is designed by incorpo-
rating DIE and IDMPC. A rigorous stability analysis of
the proposed ADRFC approach is given. The controller
is able to automatically trade-off between formation con-
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Fig. 1. MAS experimental platform and communication topology

trol and disturbance rejection and improves the transient
performance of the system. In addition, experiments are
conducted with four mobile robots to verify the effective-
ness and superiority of ADRFC.

II. MAS AND PROBLEM FORMULATION

In this paper, a typical MAS experimental platform consist-
ing of four TurtleBot-2 mobile robots is constructed, as shown
in Fig. 1. This mobile robot has a two-wheel differential lay-
out, and its maximum linear and angular velocities are 0.7 m/s
and 3.14 rad/s, respectively. In addition, the robot is positioned
by a set of wraparound digital camera OV7620, which is a 1/3-
inch CMOS image sensor with an image resolution of 320*240
at 300 dots per inch. Therefore, the smallest displacement that
can be recognized by this camera is 2.54cm/300=0.0085cm.
The sampling period is set to Ts = 0.05s. The communication
topology associated with the four mobile robots is undirected.
The adjacency matrix is represented by A = {aij} with
aii = 0. If agent i can receive information from agent j,
aij = 1; otherwise, aij = 0. The involved pinning matrix is
indicated as G = diag {gi} ∈ RN×N , where gi = 1 if node i
exchanges information with itself.

Considering that MAS forms a concentric circle formation
around an object, which is a typical formation task such as
in [30] and [31]. Then, Fig. 2 displays the desired circle
formation based on the virtual structure approach, where VMR
denotes the virtual mobile robot and MR denotes the mobile
robot. Define Vi = (xvi, yvi, θvi) be the position (xvi, yvi)
and directional angle θvi of VMR. Similarly, for MR i, denote
Ai = (xai, yai, θai), where (xai, yai) is position and θai is the
direction angle. The MRs need to track the reference trajectory
Γi generated by the VMRs, i = 1, . . . , N . As shown in Fig. 2,
the four MRs need to form a formation of concentric circles
with radius 2m, and the ideal angle differences between two
adjacent MRs are θr12 = θr23 = θr34 = π

4 . Then, the kinematic

model of the VMR i and its corresponding MR can be obtained

φ̇vi =

 ẋvi
ẏvi
θ̇vi

 =

 cos θvi 0
sin θvi 0

0 1

[ vvi
ωvi

]
, (1)

φ̇ai =

 ẋai
ẏai
θ̇ai

 =

 cos θai 0
sin θai 0

0 1

[ vai
ωai + fdi

]
, (2)

where vvi and ωvi represent the linear and angular velocities
of the VMR i, respectively. vai and ωai are the linear velocity
and angular velocity of the MR i, respectively. The effects
of modeling uncertainty, component aging and wear, and
environmental noise on the system are considered as the total
disturbance fdi. It is assumed that fdi belongs to the L2 norm
bounded function and its increment satisfies ‖∆fdi (k)‖ ≤ θf .

Remark 1: As can be seen from (2), the displacement of the
robot in the X and Y directions is determined by the orientation
angle θai and the linear velocity vvi, and if there is a linear
velocity disturbance, the disturbance effect can be eliminated
by adjusting the orientation angle of the robot. In contrast, the
orientation angle of the robot is only determined by the angular
velocity, and the disturbance occurring in the angular velocity
cannot be compensated by the change in X and Y directions.
Therefore, angular velocity disturbance has a more significant
effect on the trajectory of the mobile robot compared to linear
velocity disturbance, which is the reason why only angular
velocity disturbance is considered in this paper.

Based on the framework of path coordinates, the tracking
error state φei between Vi and Ai in the global coordinate
system can be converted to the local coordinate system

φei=

 xei
yei
θei

=

 cos θai sin θai 0
− sin θai cos θai 0

0 0 1

 (Vi − Ai). (3)

By taking the derivative of (3) and rearranging with kine-
matic model, one obtains

ẋei = ωaiyei − vai + vvi cos θei,
ẏei = −ωaixei + vvi sin θei,

θ̇ei = ωvi − (ωai + fdi) .
(4)
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Fig. 2. Desired formation for MAS

By linearizing (4) around the equilibrium point [27], and
discretize it according to the sampling period Ts. Define
uei =

[
vvi cos θei − vai ωvi − ωai

]T
, the dynamics of the

tracking error system i in the local coordinate system can be
obtained as{

φei (k + 1) = Aeφei (k) +Beuei (k) +Bffdi (k) ,
yei (k) = Ceφei (k) ,

(5)

where φei(k) ∈ Rn, uei(k) ∈ Rm, yei(k) ∈ Rp and fdi(k),
represent the tracking error system state, the control input,
the measurement output and the disturbance, respectively. The
coefficient matrices are given as follows

Ae =

 1 Tsωvi 0
−Tsωvi 1 Tsvvi

0 0 1

 , Be =

 Ts 0
0 0
0 Ts

 ,
Bf = BeH1, H1 =

[
0
−1

]
, Ce =

 1 0 0
0 1 0
0 0 1

 .
Considering the formation control problem of MAS, the

reference path Γi generated by the VMR is parameterized by
the variable θvi. Then, the state of the parameterized path of
MR i is given as Γi (θvi) =

[
xvi (θvi) yvi (θvi) θvi

]T
.

According to (1), the path variable θvi can be expressed as

θvi(k + 1) = θvi(k) + Tsωvi(k). (6)

It can be seen that if all path parameters θvi reach consensus,
such as θvi(k) − θvj(k) − θrij = 0, i 6= j, then the VMR
will be at the desired position of the geometric structure. The
MRs will be able to track the VMRs and form the desired
formation. Thus, the formation control problem for the MAS
in the presence of disturbances can be decomposed into the
following two tasks.
1) Path tracking task: To ensure that each MR can converge

to the corresponding VMR and move along the path of Γi
in the presence of disturbance and input constraint. It is
necessary to design a controller for each MR such that the
following condition holds

lim
k→∞

‖φei(k)‖ = 0. (7)

2) Formation synchronization task: To ensure that all MR
path parameters θai(k), i = 1, ..., N are synchronized in
the presence of disturbance and input constraint to maintain
the desired formation. It is necessary to design a controller
for each MR to achieve the following objective, i.e.,

lim
k→∞

∥∥θai(k)− θaj(k)− θrij
∥∥ = 0. (8)

To summarize, the main objective of this paper is to
design an ADRFC method for MASs with disturbances and
input constraints. Thus, it is ensured that each MR and its
corresponding path are synchronized, and a desired formation
is achieved.

III. DESIGN OF ADRFC FOR MAS

In this section, an ADRFC approach is designed by incor-
porating DIE and IDMPC. Then, the design of the DIE and
IDMPC are given in Section III.A and III.B, respectively. Sub-
sequently, the integrated formation controller (Section III.C)
and the stability analysis (Section III.D) are presented.

A. DIE for Disturbance Estimation

In order to estimate the states and disturbances of the sys-
tem, a set of DIEs are constructed, the structural assumptions
of the DIE are given in [21]. The following intermediate
variable is defined as

δi(k) = fdi(k)−$BTf φei(k), (9)

where $ is an adjustable parameter. Then, for the i-th MR,
the DIE is presented as

φ̂ei(k + 1) = Aeφ̂ei (k) +Beuei (k) +Bf f̂di (k)
+HYei (k) ,

δ̂i(k + 1) = f̂di (k)−$BTf Aeφ̂ei (k)

−$BTf Beue (k)−$BTf Bf f̂di (k) ,

f̂di(k) = δ̂i(k) +$BTf φ̂ei(k),

ŷei(k) = Ceφ̂ei (k) ,

(10)

where Yei (k) = (
∑
j∈N

aij (yei(k)− yej(k)) + giyei(k) −∑
j∈N

aij (ŷei(k)− ŷej(k))− giŷei(k)). H is the observer gain

to be solved. φ̂ei (k), δ̂i(k), f̂di(k) and ŷei(k) are the estimates
of φei (k), δi(k), fdi(k) and yei(k), respectively.

Define the estimation errors eφi (k) = φei (k) − φ̂ei (k)

and eδi(k) = δi(k) − δ̂i(k), A1 =
(
Ae +$BfB

T
f

)
,

A2 = $BTf

(
I −Ae −$BfBTf

)
, A3 =

(
I −$BTf Bf

)
, the

overall estimation error system can be expressed as

eφ (k + 1) = (IN ⊗A1) eφ (k)− (M ⊗HC) eφ (k)

+ (IN ⊗Bf ) eδ (k) , (11)
eδ (k + 1) = (IN ⊗A2) eφ (k) + (IN ⊗A3) eδ (k)

+ (IN ⊗ I) ∆fd (k) , (12)

where ⊗ denotes Kronecker product, M = L + G, L is the

Laplacian matrix, eφ(k) =
[
eTφ1

(k), . . . , eTφN
(k)
]T

, eδ(k) and
∆fd(k) are similar to eφ(k). The DIE utilizes the output
difference HYei(k) between the controlled object and the
observation system to correct the estimated value, and the
convergence of the state observation error (11) and the inter-
mediate variable observation error (12) can be ensured by the
proper configuration of the gain matrix H . Subsequently, the
stability of the overall estimation error system and the observer
gain can be obtained from the following theorem [21].
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Theorem 1: The states of the overall estimation error
system (11)-(12) are uniformly ultimately bounded if there
exist scalars $ > 0, matrices P1 > 0, P2 > 0 and W > 0,
such that the following optimization problem is solvable

min − log (detP1)

s.t.


Θi

11 Θi
12 Θi

13 Θi
14 0

∗ Θi
22 0 0 Θi

25

∗ ∗ Θi
33 0 0

∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −εI

 < 0
(13)

where i = 1, 2, ..., N , λi is the eigenvalue of M , the
symbol ∗ within a matrix represents the symmetric entry.
Θi

11 = AT2 P2A2 − P1, Θi
12 = AT1 P1Bf − λiC

TWTBf +
AT2 P2A3, Θi

13 = AT1 P1 − λiCTWT , Θi
14 = AT2 P2, Θi

22 =
BTf P1Bf +AT3 P2A3 − P2, Θi

25 = AT3 P2, Θi
33 = −P1. Then,

the gain of the DIE is given by H = P−1
1 W .

Proof : Please See the Appendix.A.
Remark 2: In [21], H is a feasible solution for the stability

linear matrix inequality. Due to the use of state feedback, the
magnitude of H is not directly related to the performance of
the control law. In this paper, the control law obtained from the
IDMPC solution is used and the error correction term HYei (k)
is added to the prediction equation. Therefore, it is necessary
to limit the magnitude of H to prevent system oscillations.
Here, − log (detP1) is selected as the optimization objective.

B. IDMPC with Input Constraint

In the existing DMPC-based results [32], [33], the terminal
constraint set and the terminal penalty matrix are obtained
directly from a Lyapunov equation, which cannot handle the
impact of the input constraints on the system well. Therefore,
an IDMPC is designed to ensure that each MR can perform
path tracking and formation synchronization tasks. The local
cost function of the i-th MR is as follows

Ji (k) =

P−1∑
l=0

(∥∥∥φ̂ei (k + l |k )
∥∥∥2

Q
+ ‖uei (k + l |k )‖2R

+ (
∑
j∈N

aijH2

(
φ̂ej (k + l |k )− φ̂ei (k + l |k )

)
−giH2φ̂ei (k + l |k ))2

)
+
∥∥∥φ̂ei (k + P |k )

∥∥∥2

P4

,

(14)

where H2 =
[

0 0 1
]T

, P is the prediction horizon,
φ̂ei (k + l |k ) and uei (k + l |k ) represent the prediction value
of the φ̂ei (k |k ) and uei (k |k ) at time k, respectively. Q and
R are both real, symmetric positive definite weight matrices
trading-off control cost for better system performance. P4 is
a terminal penalty matrix.

Remark 3: As shown in Eq. (14), the cost function proposed
in this paper can be divided into four components. The first two

components,
∥∥∥φ̂ei∥∥∥2

Q
and ‖uei‖2R represent the costs associated

with the system state and control inputs respectively, which
ensure that each MR converges to its corresponding VMR.
(
∑
j∈N

aijH2

(
φ̂ej − φ̂ei

)
− giH2φ̂ei)

2 denotes the cost of the

directional angle between MRs for the formation synchro-

nization task. Moreover,
∥∥∥φ̂ei∥∥∥2

P4

is the terminal penalty that
guarantees the system trajectory converges to the terminal
constraint set.

Remark 4: Note that gi = 1 denotes the interaction of own
information, and this symbol appears mainly in two places:
1) The gi(yei(k) − ŷei(k)) in the DIE design process (10).
Its main function is to ensure the convergence of the output
error and output error estimation of the MR itself. 2) The
giH2φ̂ei(k + l |k ) in the IDMPC cost function (14), whose
main function is to ensure the convergence of the tracking
error of the MR itself. The gi in the DIE and the gi in the
cost function are corresponding to each other in order to merge
like terms in the subsequent derivation. In addition, if gi = 0,
the system needs longer time to achieve the same estimation
performance and control performance as gi = 1, which is
mainly due to the possibility of failure of the error correction
term Yei(k) when gi = 0.

To ensure the stability of the designed IDMPC method, the
following three elements are designed.

1) Terminal Controller: The terminal controller for the i-th
MR is designed as follows

uei (k) = −Kφ̂ei (k)−H1f̂di (k) , (15)

where K denotes the terminal feedback gain matrix obtained
by the LQR algorithm.

2) Terminal Constraint Set: In order to make the system
state enter the stability domain earlier, the following theorem
is given.

Theorem 2: Based on the terminal controller (15), if there
exists a symmetric matrix W3 > 0 and h ∈ (0, 1) such that
the following optimization problem is solvable

min − log (detW3)

s.t.

[
hW3 ∗

(Ae −BeK)W3 W3

]
≥ 0,[

1
ηλ2

(
1−
√
h
)2

I ∗
HC W3

]
≥ 0,

(16)

then a maximum terminal constraint set Etcs ={
φ̂e : φ̂Te (IN ⊗ P3) φ̂e ≤ 1, P3 = W−1

3

}
can be obtained.

Proof : Please See the Appendix.B. �
3) Terminal Penalty Matrix: For ∀φ̂e ∈ Etcs, the terminal

penalty matrix needs to satisfy the following inequality

φ̂Te (k + 1) (IN ⊗ P4) φ̂e (k + 1)− φ̂Te (k) (IN ⊗ P4) φ̂e (k)

+ φ̂Te (k) (IN ⊗Q) φ̂e (k) + uTe (k) (IN ⊗R)ue (k)

+ φ̂Te (k)
(
MTM ⊗HT

2 H2

)
φ̂e (k) ≤ 0. (17)

To obtain a smaller terminal penalty matrix and expand the
feasible range of the subsequent optimization problem, the
following theorem is given.

Theorem 3: Based on the terminal controller (15)
and terminal constraint set Etcs, if there exists a
symmetric matrix W4 = P−1

4 > 0, h ∈ (0, 1) and

Υ=
(
P3 +Q+ λ2HT

2 H2 + 2KTRK + 2µσP3 −
√
hP3

) 1
2

,
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Fig. 3. Block diagram of ADRFC.

then the terminal penalty matrix P4 can be obtained by
solving the following optimization problem

min − log (detW4)

s.t.


√
hW4 ∗ ∗

(Ae −BeK)W4 W4 ∗
ΥW4 0 1√

h

 ≥ 0,[
1
ηλ2

(
1−
√
h
)2

∗
HC W4

]
≥ 0.

(18)

Proof : Please See the Appendix.C. �

C. Integrated Formation Controller

Combining the previously designed DIE and IDMPC, the
integrated formation controller of MAS is constructed, and
its structural block diagram is shown in Fig. 3. The control
objective of each MR can be described by the following
optimization problem

min
{uei(k)...uei(k+P−1)}

Ji (k) (19)

s.t.

φ̂ei (k + l + 1) = Aeφ̂ei (k + l) +Beuei (k + l)

+Bf f̂di (k + l) +HYei (k + l) , (19a)

ŷei (k + l |k ) = Ceφ̂ei (k + l |k ) , l = 1, . . . , P, (19b)

ui (k |k ) =
[
vai (k |k ) ωai (k |k )

]T
,

ui (k + l |k ) ∈ U, l = 1, . . . , P − 1, (19c)

φ̂ei (k + P |k ) ∈ Etcs. (19d)

Remark 5: Equations (19a) and (19b) represent the error
state prediction equation and output equation based on the

estimated value, and Eqn. (19c) represents the control input
constraint. It should be noted that (19c) is the input constraints
of the MR, which are obtained through a nonlinear mapping
between the VMR and control input uei. Equation (19d) rep-
resents the terminal constraints. It should be highlighted that
the state/output feedback control method cannot completely
compensate for the disturbance due to the presence of the input
constraints, which prolongs the system convergence time. In
contrast, the proposed method adopts the design criterion
of the maximum terminal constraint set, which reduces the
transient time.

Obviously, Eq. (19) is a local optimization problem, but
it contains coupling term from the information of neighboring
MRs. The Nash optimization strategy in [34] is usually applied
to solve such problem. Assuming that the coupling variables
from the neighbors are set as the final iteration values, which
means that each MR optimizes its cost function to determine
its control input. Then, the whole system can converge to
a Nash equilibrium. Due to the presence of non-linear con-
straints (19d) in the optimization problem, it is converted
into a second-order cone program (SOCP) problem to solve.
According to (10), the prediction equation of IDMPC can be
obtained

φ̂ei (k + 1) =Aeφ̂ei (k) +Beuei (k) +Bf f̂di (k) +HYei (k) ,

...

φ̂ei (k + P ) =ANe φ̂ei (k)

+AN−1
e Beuei (k) . . .+Beuei (k + P − 1)

+AN−1
e Bf f̂di (k) . . .+Bf f̂di (k + P − 1)

+AN−1
e HYei (k) . . .+HYei (k + P − 1) .

Note that f̂di(k + l) and Yei(k + l) (l = 1, . . . , P − 1)
represent future disturbance estimation and error correction,
while future information is not available. To increase the
feasible region of the optimization objective, it is reasonable to
assume that the future measurements are equal to the present
measurements [32]. It should be noted that, compared to
the use of independently designed formation controller and
disturbance compensator, the integrated design approach adds
a recursive term about the disturbance f̂di(k) to the MPC
prediction equation and performs the solution of the control
law on this basis. In this case, the resulting control law already
integrates the functions of formation control and disturbance
rejection. The controller can automatically trade-off formation
control and disturbance rejection and can improve the transient
performance of the system. Then, it is rewritten into a matrix
form

Φei = Āφ̂ei (k) + B̄eUei + B̄f f̂di (k) + H̄Yei (k) , (20)

where Φei =
[
φTei (k + 1) , . . . φTei (k + P )

]T
, Uei =[

uTei (k) , . . . uTei (k + P − 1)
]T

, B̄f and H̄ are similar to Ā,

Ā =


Ae
A2
e

...
ANe

 , B̄ =


Be
AeBe Be

...
...

. . .
AN−1
e Be AN−2

e Be · · · Be

 .



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Define ψi (k) =
∑
aijH2

(
φ̂ej (k |k )− φ̂ei (k |k )

)
−

giH2φ̂ei (k |k ), Ψi =
[
ψTi (k + 1), . . . , ψTi (k + P )

]T
. Thus,

the local cost function (14) can be written as

Ji (k) =ΦTeiQ̃Φei + UTeiR̃Uei + ΨT
i Ψi

+ φ̂Tei (k |k )Qφ̂ei (k |k ) + ψ2
i (k |k ), (21)

where Q̃ = diag {IP−1 ⊗Q,P}, R̃ = IP ⊗R.
It can be seen that φ̂Tei (k |k )Qφ̂ei (k |k ) and ψ2

i (k |k ) are
independent of the optimization objective Uei. Define γi as the
upper bound of Ji (k)− φ̂Tei (k |k )Qφ̂ei (k |k )− (ψi (k |k ))

2,
one can obtain

ΦTeiQ̃Φei + UTeiR̃Uei + ΨT
i Ψi ≤ γi. (22)

Further, (22) and the nonlinear constraint (19d) are equiva-
lent to

4ΦTeiQ̃Φei + 4UTeiR̃Uei + 4ΨT
i Ψi + (1− γi)2 ≤ (1 + γi)

2
,

ΦTeiH
T
3 PH3Φei ≤ 1. (23)

where H3 = [ 0 . . . 0︸ ︷︷ ︸
P−1

I ]. Combining (23) and (19c),

the final SOCP optimization problem can be described

min
Uei

γi

s.t.
∥∥[ 2Q̃

1
2 Φei 2R̃

1
2Uei 2Ψi (k) 1− γi

]∥∥ ≤ 1 + γi,∥∥∥P 1
2H3Φei

∥∥∥ ≤ 1,

uei (k + l |k ) ∈ U, l = 1, . . . , P − 1.
(24)

If the above optimization problem is solvable,
then the first optimal control sequence u∗ei (k) =
[ I 0 . . . 0︸ ︷︷ ︸

P−1

]U∗ei is extracted. According to

u∗ei =
[
vvi cos θ̂ei − vai(k) ωvi − ωai

]T
, the final

integrated formation controller of each MR is obtained. The
proposed ADRFC is summarized in Algorithm 1.

Remark 6: Since the optimization problem considered in
this paper has a terminal constraint φ̂ei (k + P |k ) ∈ Etcs in
the form of an L2 norm, which cannot be solved using the
QP or QCQP algorithms. Therefore, it is transformed into a
more generalized SOCP problem and solved quickly using an
advanced Mosek solver. Note that either QP or QCQP is a
special case of the SOCP problem.

In Algorithm 1, all the parameters can be categorized into
experimental parameters (φvi, φ̂ei, vvi, ωvi, θrij) and algorith-
mic parameters (ε, h, $, θrij , κ, Q, R, P ). In the experimental
parameters, φvi, vvi and ωvi mean the state information, linear
velocity, and angular velocity of the VMR, respectively. φ̂ei
denotes the estimated initial value of the tracking error, and
θrij represents the desired formation angular difference. The
above parameters are those that need to be set in advance
in the experiment and will not affect the performance of the
algorithm. Among the algorithm parameters, ε, h, $, κ, qmax,
Q, R and P are the parameter settings regarding DIE and
IDMPC, where ε and h are the parameters in (13), (16) and
(18), which are only needed to ensure that the LMI is solvable.

Algorithm 1 ADRFC Controller Design Method
Off-line section:

1: Given the initial parameter φvi, φ̂ei, vvi, ωvi, ε, h, $,
θrij , κ, Q, R and P . Set uei = 0, the number of iteration
q = 0, and the maximum number of iteration qmax.

2: Calculate terminal controller gain K. Solve optimization
problems (13), (16) and (18) to obtain H , Etcs and P4.

On-line section:
3: Using DIE to obtain information about φ̂ei(k) and f̂di(k).
4: According to the communication topology, the MR i

exchange φ̂ei(k) and uqei(k) between its neighbors.
5: If q ≤ qmax and φ̂ei(k) ∈ Etcs, up+1

ei (k) = −Kφ̂ei (k)−
H1f̂di (k); If q ≤ qmax and φ̂ei(k) /∈ Etcs, solve the
SOCP optimization problem to obtain uq+1

ei (k); If q >
qmax, stop the iteration, go to Step 7.

6: If all MRs meet the stopping criteria∥∥∥uq+1
ei (k)− uqei (k)

∥∥∥ ≤ κ
then stop the iteration, set uei(k) = uqei(k). Otherwise, let
q = q + 1, go to Step 4.

7: Based on uei =
[
vvi cos θ̂ei − vai ωvi − ωai

]T
,

vai(k) and ωai(k) are obtained and applied to the MR
i. Set q = 0, k = k + 1, go to Step 3.

$ is a tuning parameter of the DIE, which is mainly adjusted
according to the estimation performance and overshooting. κ
and qmax denote the expected difference of the control law
and the maximum number of iterations of Nash equilibrium.
Under the premise of ensuring that the single iteration time of
the algorithm is within the sampling time, κ should be as small
as possible and qmax should be as large as possible. Q and R
represent the weighting coefficients of IDMPC, which indicate
the emphasis on the system state and controller, respectively.
P represents the prediction horizon of IDMPC. All the above
algorithm parameters need to be adjusted according to the
actual experimental situation, the only principle is that the
single iteration time of the algorithm must be guaranteed to
be within the sampling time.

The specific logic of the algorithm is as follows. First,
some of the initial parameters are given in the offline phase
and the terminal controller gain, DIE observer gain, terminal
constraint set and terminal penalty matrix are calculated. Then,
the mobile robot is placed in the experimental site to start
running, and the algorithm first obtains an estimate about
the tracking error state and disturbance by DIE, and then a
set of control laws are obtained by IDMPC. Next, a Nash
optimization strategy is used to continuously optimize the
control laws until the before and after control law errors are
within the desired range. Finally, the final control law for each
mobile robot is inversely solved and applied to the robot, thus
realizing active disturbance rejection formation control.
D. Stability Analysis

After completing the design of the IMPC and the controller,
the main result is given as the following theorem.

Theorem 4: If the optimization problem (24) has a solution
at the moment k = 0, then its optimization problem is feasible
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for any k > 0 moments, and the closed-loop system consisting
of Algorithm 1 is asymptotically stable.

Proof : Suppose that by solving the SOCP optimization
problem at moment k, the optimal control sequence
is U∗e (k) = {u∗e (k |k ) , . . . , u∗e (k + P − 1 |k )},
and its corresponding state sequence is{
φ̂∗e (k + 1 |k ) , . . . , φ̂∗e (k + P |k )

}
, both of them satisfy

control and terminal constraint, where u∗e = [u∗Te1 , ..., u
∗T
eN ]T

and φ∗e = [φ̂∗Te1 , ..., φ̂
∗T
eN ]T . Then, the global optimal cost

function J∗(k) can be expressed as:

J∗(k) =

P−1∑
l=0

(
∥∥∥φ̂∗e (k + l |k )

∥∥∥2

(IN⊗Q)
+ ‖u∗e (k + l |k )‖2(IN⊗R)

+
∥∥∥φ̂∗e (k + l |k )

∥∥∥2

(MTM⊗HT
2 H2)

)

+
∥∥∥φ̂∗e (k + P |k )

∥∥∥2

(IN⊗P4)
. (25)

To obtain an admissible control sequence
Ue (k + 1) for optimization problem at time k + 1,
take the control sequence to be Ue(k + 1) =
{u∗e(k + 1 |k ), . . . , u∗e(k + P − 1 |k ), u∗e(k + P |k )}, where
u∗e (k + P |k ) = −(IN⊗K)φ̂∗e (k + P |k )−(IN⊗H1)f̂d (k).
Then, according (25) and Ue (k + 1), it is not difficult to
conclude that
J(k + 1) =J∗(k)−

∥∥∥φ̂∗e (k |k )
∥∥∥2

(IN⊗Q)
− ‖u∗e (k |k )‖2(IN⊗R)

−
∥∥∥φ̂∗e (k |k )

∥∥∥2

(MTM⊗HT
2 H2)

+
∥∥∥φ̂∗e (k + P + 1 |k )

∥∥∥2

(IN⊗P4)

+ ‖u∗e (k + P |k )‖2(IN⊗R)

+
∥∥∥φ̂∗e (k + P |k )

∥∥∥2

(MTM⊗HT
2 H2)

−
∥∥∥φ̂∗e (k + P |k )

∥∥∥2

(IN⊗P4)

+
∥∥∥φ̂∗e (k + P |k )

∥∥∥2

(IN⊗Q)
. (26)

From the properties of φ̂∗ei (k + P |k ) ∈ Etcs (17) and the
terminal penalty matrix P4, one can conclude that Ue(k + 1)
satisfies the controller constraints (19c) and the system satisfies
the terminal constraints (19d). Thus, the control sequence
Ue(k + 1) at moment k + 1 is a feasible solution to the
optimization problem (24), and the following inequality can
be derived
J(k + 1) ≤J∗ (k)−

∥∥∥φ̂∗e (k |k )
∥∥∥2

(IN⊗Q)
− ‖u∗e (k |k )‖2(IN⊗R)

−
∥∥∥φ̂∗e (k |k )

∥∥∥2

(MTM⊗HT
2 H2)

. (27)

Since φ̂∗e (k |k ) = φ̂e (k |k ), u∗e (k |k ) = ue (k |k ). If there
is an optimal solution to the optimization problem at instant
k + 1, then it can be obtained

J∗ (k + 1) ≤J (k + 1) ≤ J∗ (k)−
∥∥∥φ̂∗e (k |k )

∥∥∥2

(IN⊗Q)

−
∥∥∥φ̂∗e (k |k )

∥∥∥2

(MTM⊗HT
2 H2)

. (28)

Therefore, J∗(k) can be regarded as a Lyapunov function
for a closed-loop system that is nominally asymptotically
stable. This completes the stability proof. �

IV. EXPERIMENTAL VERIFICATION

In this section, experiments will be conducted on the previ-
ously mentioned mobile robot experimental platform to verify
the effectiveness and superiority of the ADRFC method. The
adopted formation is shown in Fig. 2, the radius of the circular
trajectory is 2 m. The sampling time of the whole system
is set to 0.05s. The computer configuration for executing the
program is as follows: Intel Core i5-7300HQ, 16GB RAM,
MATLAB R2022a, Ubuntu 18.04, ROS Melodic. Through the
publisher and subscriber, real-time communication between
MATLAB and ROS is performed so as to complete command
sending and data uploading.

A. Formation Control Experiment

In this subsection, formation control experiments are per-
formed to verify the effectiveness of ADRFC via the ex-
perimental platform as shown in Fig. 1, and the desired
formation is presented in Fig. 2. The reference angular ve-
locity ωvi = 2π

25 rad/s, the reference linear velocity vvi =
4π
25m/s, and the reference angular difference θr12 = θr23 =
θr34 = π

4 . The initial parameters of each VMR are set as
follows: φv1 (k) =

[
1−
√

2 1 +
√

2 5π
4

]T
, φv2 (k) =[

1 3 π
]T

, φv3 (k) =
[

1 +
√

2 1 +
√

2 3π
4

]T
,

φv4 (k) =
[

3 1 π
2

]T
. Set the disturbance for each MR

as follows
fd1 (k) = 0.2, k > 50
fd2 (k) = −0.3, k > 100
fd3 (k) = 0.25 sin

(
πk
75

)
, k > 75

fd4 (k) = 0.3 cos
(
πk
100

)
, k > 150

The DIE parameter $ = 70, and the IDMPC parameters
are given as P = 8, Q = diag(5000, 5000, 100), R = 20I ,
h = 0.99, κ = 0.01, η = 1, µ = 0.5, qmax = 20, ε =

1,
[
−0.5487 −0.4743

]T ≤ U ≤
[

0.6513 0.6257
]T

.
The matrices solved from the linear matrix inequalities are as
follows

K =

[
10.7664 −1.1841 −0.0906
−0.1636 14.1103 3.9854

]
,

H =

 0.2048 0.0026 0
−0.0026 0.2048 0.0051

0 0 0.2238

 ,
W3 =

 1.3878 0.0545 −0.0543
0.0545 0.2894 −0.3853
−0.0543 −0.3853 2.4933

 ,
W4 =

 0.0314 0.0058 0.0106
0.0058 0.0109 0.0122
0.0106 0.0122 0.0870

 .
The trajectory diagram of the MRs under the ADRFC

method is displayed in Fig. 4, and the results show that the
four MRs can accurately track the trajectories generated by
the VMRs and form a desired formation. In addition, since
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Fig. 4. Experimental trajectories of four MRs (Unit: m).
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Fig. 5. Experimental results of error state φei3(k) and its estimation φ̂ei3(k)
(Unit: m)

0 100 200 300 400 500

Time(k)

-0.5

0

0.5

1

0 100 200 300 400 500

Time(k)

-0.5

0

0.5

0 100 200 300 400 500

Time(k)

-0.5

0

0.5

1

0 100 200 300 400 500

Time(k)

-0.5

0

0.5

1

Fig. 6. Experimental results of disturbance fdi(k) and its estimation f̂di(k)
(Unit: m).

the disturbances occur in the directional angles of the MRs,
the curves of error state φei3(k) and their estimation results
are presented in Fig. 5. The results show that after a short
period of oscillation, the ADRFC is able to accurately estimate
the error state of each MR and ensure its convergence, thus
enabling the MR to complete the corresponding path tracking
task. Meanwhile, the directional angle error states of the four
MRs fluctuate at 50, 75, 100 and 150 steps, which correspond
to the time when the disturbances occur. Then, the proposed
ADRFC can obtain accurate disturbances estimation results
(as shown in Fig. 6) and adjust automatically, which makes
the error states of the MRs recover quickly. Further, the
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Fig. 7. Mobile robot linear velocity vai, angular velocity ωai and limits.

linear and angular velocity control laws for the four mobile
robots are given in Fig. 7. Therein, the blue dashed line and
the red dashed line indicate the limits of linear and angular
velocities, respectively, the blue solid line and the red solid
line represent the actual control laws. It can be seen that the
linear and angular velocities of each mobile robot are strictly
limited to the upper and lower bound regions. Meanwhile,
since the disturbance occurs in the angular velocity, the linear
velocity control law is eventually stabilized around 4π

25 , while
the angular velocity control law is adjusted according to the
disturbance, showing a constant shift or a sinusoidal shift.
The above experimental results demonstrate that the ADRFC
can obtain accurate error state and disturbance estimation
information, and can effectively perform the path tracking
task and formation control task of the MAS under the dual
influence of input constraints and disturbances.

B. Comparison Experiment

TABLE I
COMPARISON METHODS

Method Observer Controller Disturbance
rejection

ADRFC DIE IDMPC INT
CM1 DIE IDMPC INT

CM2 [21] DIE FB IND
CM3 [15] ESO FB IND

CM4 DIE IDMPC IND
CM5 [35] ESO IDMPC IND

CM6 DIE IDMPC INT

Furthermore, to highlight the superiority of the ADRFC
method, comparison experiments are conducted with the com-
mon methods listed in Table. I. In Table I, the observer,
controller, and design ideas of disturbance rejection adopted
by different methods are presented, where ESO denotes the
widely used extended state observer [14], [15], [35]; FB is
the state feedback controller; DR and NDR represent the
approaches with and without disturbance rejection, respec-
tively; INT and IND indicate the relationship between the
formation controller and disturbance rejection, INT means
that the disturbance rejection is integrated into the formation
controller, and IND shows that the disturbance rejection and
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Fig. 8. Experimental formation error Ef .

TABLE II
PERFORMANCE COMPARISON RESULTS

Method Transient
peak

Convergence
time (k)

Steady-state
peak

ADRFC 1.403 92 0.044
CM1 1.506(6.8%) 119(22.7%) 0.108(59.3%)
CM2 2.040(31.2%) 108(14.8%) 0.044(0%)
CM3 1.999(29.8%) 108(14.8%) 0.079(44.3%)
CM4 1.554(9.7%) 92(0%) 0.045(2.2%)
CM5 1.473(4.8%) 107(14%) 0.079(44.3%)
CM6 1.506(6.8%) 118(22%) 0.137(67.9%)
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Fig. 9. Experimental results of disturbance estimation error efdi (k) =

fdi(k)− f̂di(k).

the formation controller are independent of each other. The
adjustable parameters $ and the observer gain H are the same
for the DIE method, and the observer gain is the same for
the ESO method. The parameters are equal for the IDMPC
methods, the terminal controller gain K and the feedback
control gain are the same. CM1 indicates that the maximum
terminal constraint set and the minimum terminal penalty are
not applied. Additionally, the input constraints are identical
for all methods. Since the error in X, Y direction can be
represented by the angular error, the total formation error is
defined as follows

Ef =

√√√√√ N∑
i=1

∑
j∈Ni

aij
∣∣θi(k)− θj(k)− θrij

∣∣2

.

Fig. 8 shows the comparison results of the formation errors
Ef of the seven methods. To illustrate more clearly the superi-
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Fig. 10. Mobile robot state θa1 curve.
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Fig. 11. Iteration time for ADRFC and CM4

ority of ADRFC, the specific performances of the seven meth-
ods are listed in Table. II, where the percentage performance
improvement of ADRFC compared to the methods is indicated
in parentheses. It can be seen that ADRFC has the best
transient and steady-state performance among all methods,
converging at about 92 steps, and its transient and steady-state
peaks are only 1.403 and 0.044, respectively. In contrast, the
performance of the ADRFC without the maximum terminal
constraint set and minimum terminal penalty matrix (’CM1’)
is degraded, mainly because its stability domain is too small
resulting in the system cannot enter the terminal controller
action range, thus requiring more time to ensure system
convergence. For the ’CM2’ and ’CM3’ with state feedback
control, it is found that their transient peaks are the highest and
their convergence speed is inferior to the ADRFC due to the
presence of input constraints. In addition, the different steady-
state peaks of the two methods are mainly due to the significant
errors in the estimation of the error states and disturbances by
ESO. As shown in Fig. 9, the estimation error of DIE and ESO
for the disturbance is demonstrated efdi(k) = fdi(k)− f̂di(k),
where fdi(k) denotes the actual value of the disturbance and
f̂di represents the estimated value of the disturbance. It can
be seen that the estimation performance of ESO for distur-
bances is significantly inferior to DIE. The transient peaks of
both ’CM4’ and ’CM5’ with IDMPC control are effectively
reduced compared to the state feedback control method, and
the convergence time of ’CM4’ is also improved. However,
the disturbance rejection and the formation controller of the
above four methods are independent of each other, and the
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ADRFC adopts the idea of integrated design, which makes
the ADRFC surpass the above methods in all performance
metrics. The last one, ’CM6’, is a special case of ADRFC
without disturbance rejection, which has the highest steady-
state peak among all the approaches and its convergence time
is longer due to disturbance. In addition, since the disturbance
occurs on the angular velocity controller, the direction angle
curves of MR1 θa1 under different methods are given, as
shown in Fig. 10. From the figure, it can be seen that among
all the compared methods, the state curve of ADRFC has
the smallest amount of overshooting within 10-50 steps and
can quickly and smoothly converge to the reference value. In
contrast, the overshooting of CM3, CM2, CM4, CM5, CM1,
and CM6 decreases in order. And after entering the steady
state, the steady state error of CM6 is the largest because
it does not suppress the disturbance, while the steady state
errors of the remaining methods are relatively close to each
other, all within 0.01. Among the six comparison methods
mentioned above, CM4 is the closest method to ADRFC, and
the main difference is that CM4 adopts the independent design
idea, while ADRFC utilizes the integrated design approach.
In order to distinguish the two approaches more clearly, the
iteration time images of both are given in Fig. 11. Combining
Table II and Fig. 11, it can be obtained that ADRFC reduces
the overshoot by 10% at the expense of 3.9% iteration time.
It is worth noting that in some practical trajectory tracking
tasks, 10% overshooting can lead to an error of 10cm-20cm,
and this error may lead to collision accidents between devices
and economic losses. And the ADRFC method can effectively
reduce the overshoot within the allowed computation time,
which is also applicable to these situations. In summary, this
experimental result verifies the effectiveness and superiority
of the ADRFC approach in MAS formation control tasks with
input constraints and disturbances.

V. CONCLUSION

This paper provides an ADRFC approach for the formation
control task of MAS under input constraints and disturbances.
Accurate error state estimation and disturbance estimation
can be obtained by DIE. Moreover, an IDMPC method is
proposed with a rigorous theoretical proof. In contrast to
most existing methods, the disturbance rejection technique is
incorporated into the design process of the formation controller
and the design criteria of maximum terminal constraint set
and minimum terminal penalty matrix are adopted. These
improvements allow the controller to perform the path tracking
and formation synchronization tasks of the MAS under input
constraints and disturbances. Finally, the effectiveness and
superiority of the proposed method are demonstrated on a
MAS experimental platform.
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APPENDIX

A. Proof of Theorem 1

Consider the Lyapunov function as

V (k) = eTφ (k) (IN ⊗ P1) eφ (k) + eTε (k) (IN ⊗ P2) eε (k)
(29)

Based on (11)-(12), (29) and Young’s inequality [36], denote
an augmented vector e =

[
eTφ eTδ

]T
, one knows

∆V (k) ≤ eT (k)Πe(k) + (IN ⊗ (P2 + 2ε)) θ2
f (30)

where Π =

[
Π11 Π12

∗ Π22

]
, and

Π11 =
(
IN ⊗AT1 P1A1

)
− 2

(
M ⊗AT1 P1LC

)
+
(
MTM ⊗ CTLTP1LC

)
−
(
IN ⊗AT2 P2A2

)
− (IN ⊗ P1) +

1

ε

(
IN ⊗AT2 P2P2A2

)

Π12 =
(
IN ⊗AT1 P1Bf

)
−
(
M ⊗ CTLTP1Bf

)
+
(
IN ⊗AT2 P2A3

)
Π22 =

(
IN ⊗BTf P1Bf

)
+
(
IN ⊗AT3 P2A3

)
+

1

ε

(
IN ⊗AT3 P2P2A3

)
− (IN ⊗ P2)

Denote Πo = −Π, if Π < 0, i.e., Πo > 0, it can be
concluded from (30) that

∆V (k) ≤ −αV (k) + β,

where α = λmin(−Πo)
max[λmax(P1),λmax(P2)] and β = (λmax(P2) +

2ε)θ2
f . Define a set W as follows

W = {(eφ (k) , eδ (k)) |λmin (P1) ‖eφ (k)‖

+λmin (P2) ‖eδ (k)‖ ≤ β

α

}
Let Ws be the supplementary set of W , if (eφ(k), eδ(k)) ∈

Ws, it follows that

V (k) ≥ λmin (P1) ‖eφ (k)‖2+λmin (P2) ‖eδ (k)‖2 ≥ β

α
(31)

Combining (30) and (31), if (eφ(k), eδ(k)) ∈ Ws, one can
conclude that

∆V (k) ≤ 0

Through the Lyapunov theorem, the (eφ(k), eδ(k)) is uni-
formly ultimately bounded and converges exponentially to
W at a rate greater than e−αk. Further, by applying the
schur complement formula and the spectral decomposition,
one obtains that Π < 0 is equivalent to (13). This completes
the proof.

B. Proof of Theorem 2

Substituting the terminal controller into (10), the entire
closed-loop system dynamics can be described as

φ̂e (k + 1) = (IN ⊗ (Ae −BeK)) φ̂e (k) + (M ⊗HC) eφ (k) ,
(32)

where φ̂e(k) is defined similarly to eφ(k). In order to ensure
that Theorem 2 holds, the following inequality needs to be
satisfied

φ̂Te (k + 1) (IN ⊗ P3) φ̂e (k + 1) ≤ I, ∀φ̂e ∈ Etcs. (33)

Since Etcs is a convex set, it can be replaced by ∀φ̂e ∈
∂Etcs(φ̂

T
e (k) (IN ⊗ P3) φ̂e(k) = I) instead of ∀φ̂e ∈ Etcs.

Meanwhile, due to the convergence of eφ(k) has been proved,
it can be assumed that ‖eφ (k)‖ ≤ η. Based on Lemma 2.2 in
[36], one gets

φ̂Te (k)
(
IN ⊗ (Ae −BeK)

T
P3 (Ae −BeK)

)
φ̂e (k)

+
η

δ
φ̂Te (k)

(
MTM ⊗ λmax 1P3

)
φ̂e (k)

− 1

1 + δ
φ̂Te (k) (IN ⊗ P3) φ̂e (k) ≤ 0, (34)

where λmax 1 = λmax

(
CTHTP3HC

)
denotes the maximum

eigenvalue of CTHTP3HC. Define W3 = P−1
3 , the following
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matrix inequality can be obtained according to Schur comple-
ment theorem and spectral decomposition[

1
δ+1

(
1− η(δ+1)

δ λ2λmax 1

)
W3 ∗

(Ae −BeK)W3 W3

]
≥ 0, (35)

where λ = max {λ1, λ2, . . . λN}, δ ∈ (0,∞), λmax 1 ∈(
0, δ

η(δ+1)λ2

)
, and λmax 1I −CTHTP3HC ≥ 0. Define h =

1
δ+1

(
1− η(δ+1)

δ λ2λmax 1

)
, assuming that h is known, then

one can obtain λmax 1 = δ
ηλ2(δ+1) −

δ
ηλ2h. When δ = 1√

h
−1,

λmax 1 takes its maximum value λ̃max 1 = 1
ηλ2

(
1−
√
h
)2

.
Thus, the matrix inequality constraint can be converted to[

hW3 ∗
(Ae −BeK)W3 W3

]
≥ 0,[

1
ηλ2

(
1−
√
h
)2

I ∗
HC W3

]
≥ 0,

(36)

where h ∈ (0, 1). To obtain the maximum terminal constraint
set, the optimization problem min − log (detW3) can be
solved while satisfying (36). �

C. Proof of Theorem 3

Substituting the terminal controller (15) and overall closed-
loop system (32) into (17). Since the convergence of eφ (k)
and eδ (k) has been proved, and the disturbance fd(k) is L2

bounded function, it follows that fd(k) is also a bounded
function and satisfies

∥∥∥f̂d(k)
∥∥∥

2
≤ µ. Performing the inequality

transformation on (17), that is

(1 + δ)φ̂Te (k)
(
IN ⊗ (Ae −BeK)

T
P4 (Ae −BeK)

)
φ̂e (k)

+ η

(
1 +

1

δ

)
φ̂Te (k)

(
MTM ⊗ λmax 1P3

)
φ̂e (k)

− φ̂Te (k) (IN ⊗ P4) φ̂e (k) + φ̂Te (k) (IN ⊗Q) φ̂e (k)

+ φ̂Te (k)
(
MTM ⊗HT

2 H2

)
φ̂e (k)

+ 2φ̂Te (k)
(
IN ⊗KTRK

)
φ̂e (k)

+ 2µφ̂Te (k)
(
IN ⊗ λmax

(
HT

1 RH1

)
P3

)
φ̂e (k) ≤ 0. (37)

It should be noted that λmax

(
HT

1 RH1

)
does not

involve the matrix variable and can be defined as
σ = λmax

(
HT

1 RH1

)
. The subsequent proof is

similar to Theorem 2, defining W4 = P−1
4 and

Υ=
(
P3 +Q+ λ2HT

2 H2 + 2KTRK + 2µσP3 −
√
hP3

) 1
2

,
it can be concluded that

√
hW4 ∗ ∗

(Ae −BeK)W4 W4 ∗
ΥW4 0 1√

h

 ≥ 0,[
1
ηλ2

(
1−
√
h
)2

I ∗
HC W4

]
≥ 0.

(38)

In order to minimize the terminal penalty matrix, the op-
timization problem min − log (detW4) can be solved while
satisfying (38). �
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